
Lecture 4: Introduction to Instruction Set
Architecture

Prof Stevens
Fall 2000

Today: Instruction Set Architecture

• 1950s to 1960s: Computer Architecture Course
Computer Arithmetic

• 1970 to mid 1980s: Computer Architecture Course
Instruction Set Design, especially ISA appropriate
for compilers

• 1990 to 2000s: Computer Architecture Course
Design of CPU, memory system, I/O system,
Multiprocessors

Interface Design

A good interface:
• Lasts through many implementations (portability, compatibility)
• Is used in many different ways (generality)

• Provides convenient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

Structure of Modern Compilers

Front-end per Language

Global/Local opt

Code generator

High level opt

Intermediate representation

Transform to common
Intermediate form

Inlining & loop xforms

Register allocation, others

Detailed inst selection,
Machine depend opts

Lang + machine dep

Lang depend,
Machine independent

Slight lang +
Machine (regs,types)

Highly machine
Dependent
Lang independent

What Is an Instruction Set Anyway?

• Just a set of instructions
– encoding low level operations

• Each instruction is directly!! executed by the CPU’s
hardware
– How is it represented?

• By a binary format since the hardware only grok’s bits
– Typical physical blobs are bits, bytes, words, n- words

• Word size is typically 16, 32, 64 bits today
• Options - fixed or variable length formats

– Fixed - each instruction encoded in same size field - typically 1
word

– Variable - half- word, whole- word, multiple word instructions are
possible

What is an Instruction?
• Usually a simple operation
• Which operation is identified by the op- code field

– But operations require operands - 0, 1, or 2
• To identify where they are, they must be addressed

– Address is to some piece of storage
• Storage possibilities are main memory, registers, or a stack

• Each has it’s own particular organization

• Two options: explicit or implicit addressing
– Implicit - the op- code implies the address of the operands

• ADD on a stack machine - Pops the top 2 elements of the stack, then
pushes the result

– HP calculators work this way
– Can you spot the pro’s and con’s of this model?

– Explicit - the address is specified in some field of the instruction
• Note the potential for 3 addresses - 2 operands + the destination

– What are the advantages of addressing registers vs. memory?

What Operations are Needed?

• Arithmetic + Logical
– ADD, SUB, MULT, DIV, SHIFT - logical and arith, AND, OR,

XOR, NOT

• Data Transfer - copy, load, store
• Control - branch, jump, call, return, trap
• System - OS and memory management

– We’ll ignore these for now - but remember they are needed
• Floating Point

– Same as arithmetic but usually take bigger operands

• Decimal - if you go for it what else do you need?
– Legacy from COBOL and the commercial application domain

• String - move, compare, search
• Media Processing Instructions, Graphics ?

Design Space of ISA

Five Primary Dimensions
• Number of explicit operands (0, 1, 2, 3)
• Operand Storage Where besides memory?
• Effective Address How is memory location

specified?
• Type & Size of Operands byte, int, float, vector, . . .

How is it specified?
• Operations add, sub, mul, . . .

How is it specified?

Other Aspects
• Successor How is it specified?
• Conditions How are they determined?
• Encodings Fixed or variable? Wide?
• Parallelism

ISA Influence on Performance

Examples of ISA Types

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,88000,IBM RS6000, . . .1987)

How Do Each Type Compute: C = A + B

• Accumulator
– Load A
– Add B
– Store C

• Stack
– Push A
– Push B
– ADD Pop C

• Register
– Load R1, A
– Add R1, B
– Store C, R1

• Consider - instruction encoding?
• Consider what a search or sort would look like

Pros and Cons of Machine Type

Look at Fundamental Differences in
Datapath and Control- Path

• Assumptions - Datapath
– Only direct addressing
– 8 bit opcode for all (not true but difference is minor)
– 16 registers for GPR machine
– 16- bit memory address field
– Ignore byte and half- word accesses for simplicity
– Pick a 32- bit data- word for grins

• Assumptions - control (ignore conditional- branch)
– Micro- code like descriptions
– FSM control is the only control style used today

Instruction Format

Basic System Structure

Simple Accumulator Machine

Accumulator Control
• Loads

– Read Memory, Enable Memory to Accumulator
– Load Accumulator

• Stores
– Enable Accumulator to MBUS
– Write Memory

• ALU Op’s
– Read Memory
– Enable ALU to Accumulator
– Load Accumulator

• Branch - just like an IFetch but with PC as address source
– Read Memory
– Enable Memory to MIR
– Load MIR

Basic Stack Machine

Stack Control (over- simplified)

• Loads
– Read Memory
– Push

• Stores
– Enable Top to MBUS, Write Memory
– Pop

• ALU Op’s
– Load Top or Next
– Pop or not

• Branch - just like an IFetch but with PC as address source
– Read Memory
– Enable Memory to MIR
– Load MIR

General Purpose Register Machine

GPR Machine Control

• Loads - just like accumulator but select Reg.
• Stores - just like accumulator but select Reg.
• Branch - same as all the rest
• ALU OPs - whoa!

– Select Left operand and result register
– Decide whether you want memory or a register for the

right operand
– Note minimum of 3 busses between the Register array

and the ALU

GPR Machines Won!

• How many Reg’s vs. which structure is the debate
of the day

• Lot’s of options have gone to press Hence
Register (mem, operand) classification

Register- Register (0, 3) Pro’s + Con’s

• (m, n) m memory operands, n total operands in ALU
instruction

• ALU is Register to Register -- i. e. pure RISC
• Advantages:

– Simple fixed length instruction encoding
– Decode is simple since instruction types are small
– Simple code generation model
– Instruction CPI tends to be very uniform

• Disadvantages:
– Instruction count tends to be higher
– Some instructions are short - wasting instruction word bits

Register- Memory (1, 2) P + C’s

• Evolved RISC and also old CISC - go figure?
– New RISC machines capable of doing speculative and/ or deferred

loads

• Register - Memory ALU Architecture
• Advantages:

– Data access to ALU immediate without loading first
– Instruction format is relatively simple
– Density is improved over Register (0, 3) model

• Disadvantages:
– Operands are not equivalent - source operand may be destroyed
– Need for memory address field may limit # of registers
– CPI will vary

Memory- Memory (3, 3) P + C’s

• True Memory - Memory ALU Architecture
• True and most complex CISC model

– currently extinct and likely to remain so
– more complex memory actions are likely to appear but not directly

linked to the ALU
• Advantages:

– Most compact
– Doesn’t waste registers for temporary values

• Disadvantages:
– Large variation in instruction size - may need a shoe- horn
– Large variation in CPI - i. e. work per instruction
– Exacerbates the infamous memory bottleneck

Memory Addressing

• All architectures clearly need some way to address
memory

• A number of questions naturally arise
• What is accessed - byte, word, multiple words

– • For no good reason many of today’s machine are byte
addressable

– • But the main memory is organized in 32 - 64 byte lines to match
cache model

• Hence there is a natural alignment problem
– Accessing a word or double- word which crosses 2 lines requires 2

references
– automagic alignment is possible but hides the number of references
– Also therefore hides an important case of CPI bloat hence a bad

idea

When We Address Bytes –
Who Gets to Be First?

• Same issue with bit numbers - less of an ISA issue

• Big Endian - byte 0 is the MSB
• Little Endian - byte 0 is the LSB

• Wouldn’t be a big deal if we didn’t have byte
serial communication and I/ O devices

Other Alignment Issues
• Common convention is to expect aligned data

objects
– compiler is responsible for keeping this straight
– hardware just checks - e. g. generates a trap if

alignment restrictions are violated
– implies that op- code is type specific LDB - load byte,

LDW - load word, etc.
• Hence

– byte address is anything - never misaligned
– half word - even addresses - low order address bit = 0

else trap
– word - low order 2 address bits = 0 else trap
– double word - low order 3 address bits = 0 else trap

Addressing Modes
• An important aspect of ISA design

– has major impact on both the HW complexity and the IC
– HW complexity affects the CPI and the cycle time

• Basically a set of mappings
– from address specified to address used
– address used = effective address
– Effective address may go to memory or to a register array which is

typically dependent on it’s location in the instruction field
– in some modes multiple fields are combined to form a memory

address
– register addresses are usually more simple - e. g. they need to be

fast effective address generation is an important focus since it is
the common case - e. g. every instruction needs it it must also be
fast

• Note tower of Babel effect
– address mode names are vendor specific

Addressing Modes I

Addressing Modes II

A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Most Popular ISA of All Time:
The Intel 80x86

• 1971: Intel invents microprocessor 4004/8008,
– 8080 in 1975

• 1975: Gordon Moore realized one more chance for new
ISA before ISA locked in for decades

– Hired CS people in Oregon
– Weren’t ready in 1977

• CS people did 432 in 1980

– Started crash effort for 16-bit microcomputer
– 1978: 8086 dedicated registers, segmented address, 16 bit

– 8088; 8-bit external bus version of 8086;
added as after thought

Most Popular ISA of All Time:
The Intel 80x86

• 1980: IBM selects 8088 as basis for IBM PC
• 1980: 8087 floating point coprocessor:

adds 60 instructions using hybrid stack/register
scheme

• 1982: 80286 24-bit address, protection, memory
mapping

• 1985: 80386 32-bit address, 32-bit GP registers,
paging

• 1989: 80486 & Pentium in 1992: faster + MP few
instructions

Intel 80x86 Integer Registers

Intel 80x86 Floating Point Registers

80x86 Instruction Format

• 8086 in black; 80386 extensions in color

(Base reg + 2Scale x Index reg)

80x86 Instruction Encoding: Mod, Reg,
R/M Field

r w=0 w=1 r/m mod=0 mod=1 mod=2 mod=3

16b 32b 16b 32b 16b 32b 16b 32b
0 AL AX EAX 0 addr=BX+SI =EAX same same same same same
1 CL CX ECX 1 addr=BX+DI =ECX addr addr addr addr as
2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg
3 BL BX EBX 3 addr=BP+SI =EBX +d8 +d8 +d16 +d32 field
4 AH SP ESP 4 addr=SI =(sib) SI+d8 (sib)+d8 SI+d8 (sib)+d32 “
5 CH BP EBP 5 addr=DI =d32 DI+d8 EBP+d8 DI+d16 EBP+d32 “
6 DH SI ESI 6 addr=d16 =ESI BP+d8 ESI+d8 BP+d16 ESI+d32 “
7 BH DI EDI 7 addr=BX =EDI BX+d8 EDI+d8 BX+d16 EDI+d32 “

First address specifier: Reg=3 bits,
R/M=3 bits, Mod=2 bits

w from
opcode

r/m field depends on mod and machine mode

80x86 Instruction Encoding
Sc/Index/Base field

Index Base
0 EAX EAX
1 ECX ECX
2 EDX EDX
3 EBX EBX
4 no indexESP
5 EBP if mod=0, d32

if mod°0, EBP
6 ESI ESI
7 EDI EDI

Base + Scaled Index Mode
Used when:

mod = 0,1,2
in 32-bit mode
AND r/m = 4!

2-bit Scale Field
3-bit Index Field
3-bit Base Field

80x86 Addressing Mode Usage for 32-
bit Mode

Addressing Mode GccEspr.NASA7 Spice Avg.
Register indirect 10% 10% 6% 2% 7%
Base + 8-bit disp 46% 43% 32% 4% 31%
Base + 32-bit disp 2% 0% 24% 10% 9%
Indexed 1% 0% 1% 0% 1%
Based indexed + 8b disp 0% 0% 4% 0% 1%
Based indexed + 32b disp 0% 0% 0% 0% 0%
Base + Scaled Indexed 12% 31% 9% 0% 13%
Base + Scaled Index + 8b disp 2% 1% 2% 0% 1%
Base + Scaled Index + 32b disp6% 2% 2% 33% 11%
32-bit Direct 19% 12% 20% 51% 26%

80x86 Length Distribution
L

en
gt

h
in

 b
yt

es

% instructions at each length

0% 10% 20% 30%

1

2

3

4

5

6

7

8

9

10

11

24%

23%

21%

3%

12%

13%

3%

0%

0%

1%

19%

17%

16%

1%

15%

27%

4%

0%

0%

1%

24%

24%

27%

4%

13%

6%

2%

0%

0%

0%

25%

24%

29%

3%

12%

4%

2%

0%

0%

0%

Espresso

Gcc

Spice

NASA7

Instruction Counts: 80x86 v. DLX

SPEC pgm x86 DLX DLX÷86
gcc 3,771,327,742 3,892,063,460 1.03
espresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa7 15,603,040,963 6,118,740,321 0.39

Intel Summary

• Archeology: history of instruction design in a single product
– Address size: 16 bit vs. 32-bit
– Protection: Segmentation vs. paged
– Temp. storage: accumulator vs. stack vs. registers

• “Golden Handcuffs” of binary compatibility affect design 20
years later, as Moore predicted

• Not too difficult to make faster, as Intel has shown
• Does the IA-64 announcement of common future instruction

means end of 80x86???
• “Beauty is in the eye of the beholder”

– At 120M/year sold, it is a beautiful business

